UNC School of Medicine researchers Angela Wahl, PhD, Balfour Sartor MD, J. Victor Garcia, PhD, and colleagues created a germ-free mouse model to evaluate the role of the microbiome in the infection, replication, and pathogenesis of HIV and Epstein-Barr virus, the virus that can cause mononucleosis and other serious diseases.
Recent research has shown that the bacteria and other microbes in our gut play a supporting role in immunity, metabolism, digestion, and the fight against “bad bacteria” that try to invade our bodies.
However, new research published in Nature Biotechnology by Angela Wahl, PhD, Balfour Sartor, MD, J. Victor Garcia, PhD, and UNC School of Medicine colleagues, has revealed that the microbiome may not always be protective against human pathogens.

Using a first-of-its-kind precision animal model with no microbiome (germ-free), researchers have shown that the microbiome has a significant impact on the acquisition of Epstein-Barr virus (EBV) and human immunodeficiency virus-1 (HIV) infection and plays a role in the course of disease.
“These findings offer the first direct evidence that resident microbiota can have a significant impact on the establishment and pathology of infection by two different human-specific pathogens,” said Wahl, assistant professor in the Division of Infectious Diseases in the UNC Department of Medicine.